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Figure 1: Given a single-view partial scan, our method considers the volume that is shadowed by the observed points and
generates more complete and clean results compared with ME-PCN [Gong et al. 2021], PoinTr [Yu et al. 2021] and Snowflak-
eNet [Xiang et al. 2021].

ABSTRACT
Single-view point cloud completion aims to recover the full ge-
ometry of an object based on only limited observation, which is
extremely hard due to the data sparsity and occlusion. The core chal-
lenge is to generate plausible geometries to fill the unobserved part
of the object based on a partial scan, which is under-constrained and
suffers from a huge solution space. Inspired by the classic shadow
volume technique in computer graphics, we propose a new method
to reduce the solution space effectively. Our method considers the
camera a light source that casts rays toward the object. Such light
rays build a reasonably constrained but sufficiently expressive basis
for completion. The completion process is then formulated as a
point displacement optimization problem. Points are initialized at
the partial scan and then moved to their goal locations with two

∗Corresponding author: Xi Zhao, School of Computer Science and Technology, Xi’an
Jiaotong University (zhaoxi.jade@gmail.com)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9470-3/22/12. . . $15.00
https://doi.org/10.1145/3550469.3555389

types of movements for each point: directional movements along
the light rays and constrained local movement for shape refinement.
We design neural networks to predict the ideal point movements
to get the completion results. We demonstrate that our method is
accurate, robust, and generalizable through exhaustive evaluation
and comparison. Moreover, it outperforms state-of-the-art methods
qualitatively and quantitatively on MVP datasets.
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1 INTRODUCTION
3D point cloud has become popular with the fast development of
depth cameras and 3D scanning devices. It has been employed to
acquire geometries from small objects [Zeisl et al. 2013] to city-
scale infrastructure [Lai et al. 2011] in various applications such as
SLAM and self-driving cars. Although it is possible to acquire full
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Figure 2: The completion along rays. (a)we duplicate the ob-
served point multiple times to get the larger red points, and
move them along the ray with offset 𝑑𝑖 . (b) we split each red
point multiple times to get the blue points and spread them
to a neighborhood of the red point (the transparent circle).

observations via panoramic scanning in some scenarios [Kurkela
et al. 2021], very often, it requires a completion step as only partial
scans can be obtained in many cases [Fei et al. 2022].

Point cloud completion aims to generate complete shapes from
a partial point cloud. The partial point cloud can be any incom-
plete data, but a prevalent type is the partial scan, especially the
single view scan. Very recently, 3D models have been used to syn-
thesize single view partial scans for point cloud completion. The
well-known completion benchmarks, such as ShapeNet [Chang
et al. 2015], Completion3D [Tchapmi et al. 2019], MVP [Pan et al.
2021], et al. are all simulated from ShapeNet models and provide
single-view partial scans and the ground-truth point cloud for ma-
chine learning. Based on these datasets, research on point cloud
completion, especially deep learning-based techniques, has grown
rapidly in recent years. However, existing methods almost entirely
rely on network’s capacity to learn the correlation between the
observed partial scans and the complete ground truth. This leads to
an under-constrained solution space for filling in the missing geom-
etry. This uncontrolled data-fitting can generate out-of-distribution
geometries far from the ground truth or average over multiple
possible missing geometries related to the same input scan.

Our insight is that the solution space should be restricted and
more discriminative by leveraging prior knowledge. A key observa-
tion is that if we know the camera pose for the partial scan, the space
for the completion can be reduced by explicitly modeling the spatial
relation between the camera and the observed geometry. Inspired
by a computer graphics technique called shadow volume [Crow
1977], we can consider the camera as a point light facing the object,
so that the unobserved geometry should be inside the volume that
is shadowed by the object (the left column of Fig.1). This volume
is naturally a reduced solution space for the missing geometry. To
complete the geometry, we assume the observed part can shoot
particles into the shadow volume, and they will eventually land
on the missing surface of the object to help the shape completion.
However, the shadow volume has an arbitrary shape, so we need
to construct a convenient basis for possible particle movements.

We use a 2D example (Fig.2) to demonstrate our main idea. We
define the shadowed volume as “candidate volume” (𝑉𝑐 ) for the
completion (the green area in Fig.2(a)). Inversely, the volume other

than the candidate volume is the “forbidden volume” (𝑉𝑓 ) for com-
pletion. Given a camera pose and the observed points 𝑃 , We can
approximate the candidate volume 𝑉𝑐 by casting rays from the
camera to each observed point. These rays span the entire space
of 𝑉𝑐 . We consider each ray as a completion basis, and apply the
completion process along each ray with the following two steps.
First, we put multiple duplicated points on each observed point and
move them along the ray with distance 𝑑𝑖 to produce the initial
guesses of the unobserved points (the red points). The second step
is refinement. We split each red point into multiple blue points. The
final locations of the blue points are computed by first duplicating
the red points multiple times and then spreading them within the
neighborhood of the red point. We do not simply move the blue
points around locally, but constrain the moving range adaptively
for each point. The points farther away from the observed points
have larger moving ranges.

Traditionally, Chamfer Distance(𝐶𝐷) is widely used for evaluat-
ing point cloud completion quality. However, 𝐶𝐷 is a single value
that is not sufficiently discriminative and fine-grained for detailed
completion analysis. We argue that completion should be assessed
on observed and unobserved parts separately because the two parts
reflect different aspects of completion. The reconstruction of the
observed part shows the fidelity while the missing part shows the
plausibility. Therefore, in addition to the traditional metrics such
as 𝐶𝐷 and F-score, we employ a more fine-grained 𝐶𝐷 metric that
separately evaluates the reconstruction quality of the observed and
unobserved parts.

Overall, our method can reduce the solution space with the
guidance of the camera view. Furthermore, with the two types of
movements inside the reduced solution space, our method can re-
tain the observed geometric details and generate the missing part
simultaneously. Exhaustive evaluation and comparison show that
our method outperforms the state-of-the-art methods both quanti-
tatively and qualitatively. Formally, our contributions include:

(1) A novel formulation of single-view point cloud completion
with highly-reduced solution space;

(2) An effective two-step completion method based on point
movements with constrained direction and range;

(3) An intuitive fine-grained metric that separately evaluates
the observed and unobserved parts.

2 RELATEDWORK
Among the huge number of point cloud completion methods, the
methods based on the point cloud representation and deep learning
network are most related to our work. Considering the completion
methods from the input’s point of view, we can roughly classify the
existing methods into two categories: one is the methods that only
use the input implicitly. This type of method produces typically the
final results based on the guidance of a global feature. The other is
themethods that retain the input explicitly for producing the results.
Besides, as we consider the completion process a displacement
between point sets, we also introduce the displacement-related
techniques for the point cloud.
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2.1 Global Feature Guided Completion
This type of work extracts global features from partial input by
using methods such as PointNet [Qi et al. 2017a], and then decodes
this feature to generate the completion result. We call it “implicit”
because the partial input affects the final results indirectly through
the latent feature. Most point cloud completion work during the last
few years falls to this type. The early methods such as [Yuan et al.
2019] apply an encoder-decoder network. Tchapmi et al. [Tchapmi
et al. 2019] improved the decoder by using a hierarchical structure.
Wen et al. [Wen et al. 2020] further apply the skip-attention mech-
anism to convey geometric information from partial input to the
hierarchical decoder to improve the results. In [Xie et al. 2020], the
authors use 3D grids as the intermediate representation to reduce
the loss of structural and context details during completion.

These works use different ways to enforce the influence of struc-
ture and geometry details of partial input, but no matter what
techniques they use, the influence of the guidance is limited. Be-
cause when generating complete shapes, the solution space is too
large.

2.2 Input Points Retained Completion
To maximize the use of the input point cloud, researchers make
efforts to retain the input points as much as possible. We classify the
strategies of retaining input into two categories: keep all original
input points in the result and merge the input into the middle result
before refinement.

The most straightforward way to retain the input is to predict
the missing part of the shape, and then put the input and generated
part together to produce the completion result. The representative
works of this kind are PF-Net [Huang et al. 2020] and PoinTr [Yu
et al. 2021]. PF-Net uses a multi-scale generating network to gen-
erate missing regions. PoinTr uses a transformer encoder-decoder
architecture to predict the point proxies for the missing part. The
benchmark they use normally contains a random removal of parts
from the shape. Although completion for this type of partial data is
useful, it is not as general as the completion of a partial scan point
cloud.

To deal with the single view partial scan data, Liu et al. [Liu et al.
2019] propose to put the input partial scan and the initial completion
results together to further feed to the refinement process. Normally
there is also a sub-sampling step to control the number of points
generated. Such a “merge and sub-sampling” strategy has become
popular for strengthening the influence of input data on the results.
It has been used in many works, such as [Gong et al. 2021; Wang
et al. 2020; Xia et al. 2021; Xiang et al. 2021; Zhang et al. 2020].
The interesting extension for “merge and sub-sampling” is to use
the symmetry axis of the shape, and apply the “mirror” operation
before merging the input point cloud [Wang et al. 2020; Xia et al.
2021].

Our method can be roughly considered as the second input retain
strategy. However, we merge the input and the generated part
differently. By predicting the offset of points along rays, both the
observed and unobserved parts are processed uniformly in the
system, so there is no need for the traditional “merge and sub-
sampling” operation.

2.3 Displacement-based Point Cloud
Manipulation

Yin et al. [Yin et al. 2018] propose a one-step deformation to deform
one point cloud to another by using a cycle structure network. This
method can be generally applied to the transformation between
two domains. Another category of work is to use the point-wise dis-
placement for manipulating the articulated point cloud shapes [Yan
et al. 2020; Yi et al. 2018]. In [Yi et al. 2018], the pair-wise displace-
ment is used to find the correspondence between points from two
sets and further predict the segmentation and part-based motion.
RPM-net [Yan et al. 2020] predicts a temporal sequence of point-
wise displacement for the input shape to infer movable parts and
generate motions.

PMP-Net [Wen et al. 2021], PMP-Net++ [Wen et al. 2022] and
Front2Back [Yao et al. 2020] are more related to our work as they
aims to do the completion. PMP-Net and PMP-Net++ enable multi-
step movement of the input point set and use the least total moving
distance loss to mimic the earth mover distance. Compared to them,
we use viewpoint to reduce the solution space for the point’s dis-
placement problem, and constrain the movement of points with
the rays. Front2Back [Yao et al. 2020] directly uses occlusion masks
from the input and predicts the points on the “other side”. It has
difficulty in dealing with objects with complex structures as they
cannot be simply described by opposite orthographic views. In
contrast, our method is more flexible as we can generate differ-
ent numbers of new points along the rays to better represent the
geometry.

3 OUR METHOD
3.1 Problem Formulation
We formulate the completion process as a point displacement op-
timization problem. First, points are initialized at the partial scan.
Then they are moved to their goal locations with two types of move-
ments shown in Fig.2. We design a network which consists of two
main modules for such a completion process: the offset prediction
module is designed to predict the movement along rays, then the
offset-constrained refinement module is designed to estimate the
local refinement movements. We show the overall architecture of
our method in Fig.3.

The input of our system contains a camera location, a partial
scan and the rays. They are constructed as follows: assuming the
camera is located at a 3D position 𝐶𝑎𝑚 = (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐 ), and faces
the object center. From such a camera configuration, we can get
a partial scan containing 𝑁 3D points 𝑃 = {𝑝𝑖 }, (𝑖 = 1, ..., 𝑁 ). We
define a set of rays along each 𝑝𝑖 , which is represented by a vector
from 𝐶𝑎𝑚 to 𝑝𝑖 : 𝑅 = { ®𝑟𝑖 } = {𝑝𝑖 −𝐶𝑎𝑚}, (𝑖 = 1, ..., 𝑁 ).

Offset prediction. This module computes the initial completion
result 𝑃𝑜 from partial scan 𝑃 . We duplicate the input points multiple
times and move these points along the rays with the predicted offset
to get 𝑃𝑜 . We can describe this process with:

𝑝
𝑖,𝑙
𝑜 = 𝑝𝑖 + F 𝑙

𝑑
(𝑝𝑖 ) · ®𝑟𝑖 (1)

where 𝑖 = 1, ..., 𝑁 ; 𝑙 = 1, ..., 𝐿. The function F𝑑 : R3 → R computes
𝐿 offsets for each camera ray.We providemore details of this module
in Section 3.2.
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Figure 3: The overview of our method. Given the camera location and partial scan, we compute a batch of rays that is the
network’s input(a). For each ray, we first predict offset 𝑂 ′ that is visualized by lines in (b), and then predict an adjustment for
each offset that is visualized in (c), where green points represent positive adjustment; red points represent negative adjustment.
With the initial completion result(d), we further apply a two-step refinement to get a smoother result (e) and final result (f).

Figure 4: The structure of the offset prediction module. It contains the initial offset prediction (O-Predictor) and the offset
adjustment (O-Adjustment).

Figure 5: The structure of offset constrained refinement unit
(OCRU). We use function 𝑓𝑐 to compute the value 𝐶, which
is used to constrain the range of movement ®𝑣𝑐 computed by
SPD.

Offset-constrained refinement. This module computes the final
result 𝑃∗ from the initial completion result 𝑃𝑜 . We split each point of
𝑃𝑜 into multiple points, andmove themwithin a local neighborhood
to improve the local geometry details. The equation of this step is:

𝑝
𝑚,𝑘
∗ = 𝑝𝑚𝑜 + F 𝑘

®𝑣 (𝑝𝑚𝑜 ) (2)

where𝑚 = 1, ..., 𝑁𝑜 ,𝑘 = 1, ..., 𝐿∗.𝑁𝑜 is the number of points in 𝑃𝑜 .
The function F®𝑣 : R3 → R3 is for computing 𝐿∗ local movements,
in which the local movement of each point is constrained by its
offset along the ray computed in the previous module. We provide
more details of this module in Section 3.3.

3.2 Offset Prediction
To estimate the offset mapping F𝑑 defined in Equation 1, we design
a network which contains two parts: initial offset prediction (O-
Predictor) and the offset adjustment (O-Adjustment). The network
structure is shown in Fig.4.

O-Predictor. Since 𝑅 contains not only the point positions, but
also the orientations depending on the camera, modeling the corre-
lations of both positions and orientations is crucial. We design a
network module named O-Predictor to model the correlations for
predicting offsets. The input of the network is ray 𝑅 and the output
is 𝐿 offsets along each ray, denoted as 𝑂 ′ = {𝑑𝑖𝑙 }(𝑖 = 1, ..., 𝑁 ; 𝑙 =
1, ..., 𝐿), where each offset 𝑑𝑖𝑙 is a distance from 𝑝𝑖 to a new point
along the 𝑖𝑡ℎ ray in the positive direction.

Given rays 𝑅, we first extract the global correlations between
all ®𝑟𝑖 ∈ 𝑅 in a latent space using PointNet++ [Qi et al. 2017b] to
get a global feature 𝑓 1𝑔 , then transform the correlation into per-ray
features 𝑓 1𝑝 , both of which consider the orientation and position in
𝑅 simultaneously. In parallel, we concatenate 𝑅 and 𝑓 1𝑔 and pull it
through a skip Transformer [Xiang et al. 2021] where the attention
is solely based on the orientation similarity between rays, to get
the per-ray orientation correlation feature 𝑓 2𝑝 . Finally, 𝑓 1𝑝 and 𝑓 2𝑝
are concatenated with rays 𝑅, partial scan 𝑃 and global feature 𝑓 1𝑔
to compute a feature 𝑓𝑝 which is further fed into a MLP to compute
the output offset 𝑂 ′. We apply Relu to the output of MLP to make
sure all the offset values are non-negative.
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O-Adjustment. O-Predictor alone can only provide rough offset
estimation because learning the complex distribution of offsets for
different shapes is non-trivial. We design an O-Adjustment module
to improve the offset precision by modifying the predicted offset
values. From the example shown in Fig.3, we can see that although
the points at the top of the watercraft move toomuch away from the
bar after the O-Predictor step(b), the O-Adjustment module move
them back by assigning these points with negative adjustment(c).

The structure of the O-Adjustment module is as follows. After
getting the offsets 𝑂 ′ from the last module, we compute a first step
completion results 𝑃𝑜 ′ by moving each input point with this offset
along its ray. This process can be presented as 𝑝𝑖 + 𝑑𝑖𝑙 · ®𝑟𝑖 . Then
we use the PCN encoder [Yuan et al. 2019] to extract the global
feature 𝑓 2𝑔 , which is concatenated with feature 𝑓𝑝 and fed to MLP to
predict an adjustment for each offset, denoted as Δ. The final offset
𝑂 is the sum of 𝑂 ′ and Δ . We again apply the Relu function to 𝑂
to make sure the output offset is non-negative values. Finally, we
convert the output of the offset 𝑂 to the initial completion result
𝑃𝑜 by moving points along rays.

3.3 Offset Constrained Refinement
The main problems with the initial result 𝑃𝑜 are the non-uniform
density and lack of local geometry details. The points in the input
partial scan 𝑃 may distribute unevenly due to the camera con-
figuration relative to the shape, which results in non-uniformed
distribution of corresponding rays. In addition, the points farther
away from the camera are sparser because of the perspectivity of
the rays. Therefore, refinement is needed to generate fine-grained
geometry structures.

Preliminary experiments show that classic refinement methods
such as folding operation [Yang et al. 2018] and the snowflake
point deconvolution (SPD) [Xiang et al. 2021] tend to fill holes.
However, if the holes are part of the object, filling them can damage
the topology and structure of the shape. Besides, their refinement
process cannot control the movement ranges of the points. For
example, a point may move to the invalid space of the partial scan
𝑃 , which leads to a noisy effect.

To address this problem, we propose an offset-constrained re-
finement module (Fig.5) to constrain the movement range during
the refinement. We first apply a farthest point sampling (PFS) for
𝑃𝑜 to make the points distribute more evenly. Then the result is
further fed to the offset constrained refinement module, which con-
tains two layers of refinement. Each layer is an offset-constrained
refinement unit (OCRU) designed based on SPD. Here the output
of SPD is a list of 3D movement vectors. We multiply the offset
constraint value to each dimension of the SPD’s output to apply
the constraint. More specifically, the offset constraint value for 𝑗𝑡ℎ
point in 𝑢𝑡ℎ (𝑢 = 1, 2) OCRU is computed by:

𝐶
𝑗
𝑢 = 𝑓𝑐 (𝑂 𝑗 , 𝑢) = (𝑂 𝑗/2 + 0.03)/𝛼𝑢−1 (3)

where 𝑂 𝑗 is the overall offset for 𝑗𝑡ℎ point computed by the offset
prediction module. 𝛼 is a scale coefficient. In all the experiments,
we set 𝛼 = 1.5.

With this constraint, the local details of the partial scan are
kept. In the final result 𝑃∗, the points close to partial scan 𝑃 have
tiny offsets (the offsets are nearly zero), so the movement range

of such points in the refinement module is very small. As a result,
the observed geometry represented by such points is retained. The
boundary points of the partial scan are also part of the observed
points, so the generated points stem from them should not move far
too. As a result, the geometry in the boundary area is also neat and
clean. The movement range is more extensive for points generated
around the far end of the rays. So points have more freedom to
move during refinement. With such a strategy, we effectively retain
the observed geometry and improve the unobserved part’s quality.

3.4 Loss Function
We apply the shape loss L𝐶𝐷 , which is Chamfer Distance (𝐶𝐷) to
measure the shape difference between the completed results and the
ground truth. The 𝐶𝐷 between point cloud 𝑃1 and 𝑃2 is computed
by:

L𝐶𝐷 (𝑃1, 𝑃2) =
∑︁
𝑝∈𝑃1

min
𝑞∈𝑃2

| |𝑝 − 𝑞 | |22 +
∑︁
𝑞∈𝑃2

min
𝑝∈𝑃1

| |𝑞 − 𝑝 | |22 (4)

During the training, we first pre-train the offset prediction mod-
ule with loss function L𝐶𝐷 (𝑃𝑜 ′ , 𝑃gt1 ) + L𝐶𝐷 (𝑃𝑜 , 𝑃gt1 ), where the
𝑃𝑜 ′ and 𝑃𝑜 are computed by the offset prediction module. Then,
we keep the parameters in the offset prediction module fixed and
pre-train the refinement module with loss function L𝐶𝐷 (𝑃𝑟 , 𝑃gt2 ) +
L𝐶𝐷 (𝑃∗, 𝑃gt3 ), where 𝑃𝑟 and 𝑃∗ are the middle and final result
of the refinement module. Finally, we train two modules jointly
with the same loss function as the second stage. 𝑃gt1 , 𝑃gt2 and 𝑃gt3
are the ground truth point cloud which contains 8192, 2048 and
16384 points respectively. We provide other training details in the
supplementary material.

Figure 6: The computation of 𝑆𝐶𝐷1 and 𝑆𝐶𝐷2.

4 EXPERIMENTS
4.1 Dataset
We use the Multi-View Partial point cloud dataset (MVP) [Pan et al.
2021] in our experiments. MVP is computed based on 16 categories
of 4000 CAD models. Twenty-six camera locations are sampled
for each model to simulate the partial scan. In our experiment, we
recompute the MVP dataset to record the camera configuration for
each scan. Finally, we use 62400 partial-complete point cloud pairs
for training and 41600 pairs for testing.

4.2 Evaluation Metric
We use 𝐶𝐷 , F-Score [Tatarchenko et al. 2019] and Density-aware
𝐶𝐷 (𝐷𝐶𝐷) [Wu et al. 2021] to evaluate the completion results. 𝐶𝐷
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Figure 7: Visualized completion results for comparison on MVP dataset.

is sensitive to outliers but insensitive to the local density. F-score is
used as a supplement to 𝐶𝐷 to evaluate the completion results. A
higher F-score usually indicates better visual quality. 𝐷𝐶𝐷 is also
a metric for evaluating the overall point cloud distance, which is
more sensitive to the density distribution of point clouds.

The goal of the completion task naturally includes two parts:
retaining the geometry of the partial scan (task1) and generating a
reasonable shape for the unobserved part (task2). Existing metrics
are indiscriminative to the two parts, which suggests that they lack
granularity. To provide sufficient details on the completion quality,
we propose a new metric named “split𝐶𝐷” (𝑆𝐶𝐷) that includes two
values, 𝑆𝐶𝐷1 and 𝑆𝐶𝐷2.

To compute 𝑆𝐶𝐷1 and 𝑆𝐶𝐷2, we split the GT point cloud 𝑃gt into
two parts 𝑃1gt and 𝑃

2
gt based on the partial input 𝑃 . More specifically,

if a point in 𝑃gt is in the neighbourhood of 𝑃 , then it belongs to
𝑃1gt, otherwise it belongs to 𝑃

2
gt. For each point 𝑝 in 𝑃 , the neighbor-

hood of 𝑝 is defined as the spatial area within radius 𝑟 (𝑟 = 0.01 in
our setting), and the neighborhood of 𝑃 is the union of the neigh-
borhoods of all 𝑝 in 𝑃 . We next split the completion results into
two parts based on 𝑃 and 𝑃2gt: for each point 𝑝 in a result 𝑃∗, we
find a closest point 𝑝′ in the point set {𝑃, 𝑃2gt}. If 𝑝′ belongs to 𝑃 ,
then 𝑝 belongs to 𝑃1∗ , otherwise 𝑃2∗ . Then the split 𝐶𝐷 is computed
as 𝑆𝐶𝐷1 = L𝐶𝐷 (𝑃1∗ , 𝑃1gt), 𝑆𝐶𝐷2 = L𝐶𝐷 (𝑃2∗ , 𝑃2gt). This process is
visualized in Fig.6.

4.3 Comparison
We exhaustively compare our method with seven baseline methods:
PCN [Yuan et al. 2019], MSN [Liu et al. 2019], ME-PCN [Gong et al.
2021], VRCNet [Pan et al. 2021], PoinTr [Yu et al. 2021], Snowflak-
eNet [Xiang et al. 2021], and PMPNet++ [Wen et al. 2022].

Table 1: Evaluation for each method. 𝐶𝐷 and 𝑆𝐶𝐷 are multi-
plied by 104.

Methods 𝐶𝐷 F-Score 𝐷𝐶𝐷 𝑆𝐶𝐷1 𝑆𝐶𝐷2

PCN 5.907 0.617 0.628 5.863 6.322
MSN 4.749 0.682 0.645 2.210 7.757
ME-PCN 4.680 0.662 0.658 2.086 7.341
VRCNet 4.780 0.741 0.539 2.471 6.350
PoinTr 3.882 0.715 0.613 1.709 6.664
PMP-Net++ 3.381 0.687 0.696 1.391 6.954
SnowflakeNet 2.696 0.796 0.524 0.951 4.683
Ours 2.419 0.800 0.513 0.646 3.896

Table 2: Ablation study. 𝐶𝐷 and 𝑆𝐶𝐷 are multiplied by 104.

Methods 𝐶𝐷 F-Score 𝐷𝐶𝐷 𝑆𝐶𝐷1 𝑆𝐶𝐷2

No GT viewpoint 2.635 0.781 0.538 0.678 4.590
No adjustment 2.523 0.787 0.532 0.706 4.090
No offset constraint 2.730 0.779 0.540 0.827 4.355
Our final 2.419 0.800 0.513 0.646 3.896

Table 3: Ablation study on the number of points along rays
in the offset prediction module. 𝐶𝐷 and 𝑆𝐶𝐷 are multiplied
by 104.

Point number 𝐶𝐷 F-Score 𝐷𝐶𝐷 𝑆𝐶𝐷1 𝑆𝐶𝐷2

2 2.375 0.798 0.523 0.608 4.066
4 (Ours) 2.419 0.800 0.513 0.646 3.896
6 2.480 0.786 0.535 0.741 3.956
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Quantitative comparison. The quantitative results are reported in
Table 1. This table lists averaged metric values for all categories of
shapes, and more detailed results are in the supplementary material.
Overall, our method achieves the best performance in all metrics
across all categories of objects. Lower𝐶𝐷 and higher F-Score values
indicate an overall better completion quality. A lower 𝐷𝐶𝐷 value
demonstrates that our method does not suffer from unbalanced
local density compared with other baseline methods. The 𝑆𝐶𝐷

show a more fine-grained analysis with 𝑆𝐶𝐷1 and 𝑆𝐶𝐷2. PCN has
similar scores for the two parts, which suggests that the completion
quality for the observed part and the unobserved part are quite
similar. For other baseline methods, the 𝑆𝐶𝐷1 values are reduced,
but the 𝑆𝐶𝐷2 values do not change much (sometimes even increase).
This reveals that these methods implicitly focus on retaining the
observed geometry, sometimes at the cost of the completion quality
of the unobserved part. One possible reason is that they allocate too
many points to input to ensure reconstruction but fewer points for
the missing part. Finally, SnowflakeNet does reduce both of these
values but not significantly on 𝑆𝐶𝐷2 compared with our method.
Nevertheless, our method reduces both 𝑆𝐶𝐷 values, demonstrating
that our results are not only overall better, but also have balanced
improvement on both the observed and unobserved geometries.

Qualitative comparison. In Fig.7, we visually compare ourmethod
with other baseline methods on the MVP dataset. In general, our
method can keep the geometric details of the partial input better.
First, the partial scan boundary is not blurred during completion,
which is crucial for model details such as the holes in the back of
the chair, the bookshelve and the neck of the desk lamp. Besides,
the concave areas in the input are also kept, such as the sitting area
of the watercraft. The holes, boundaries and concave areas are vital
geometric/topological features of an object, indicating their func-
tionality or distinguishing them from similar objects. Keeping these
details intact in the input is crucial for high-fidelity completion.
Next, Our method can capture overall shape variations well across
various shapes. It can deal with unique shapes that are rare in the
training data. One example is the sofa with a rather asymmetric
design, which is statistically rare in the data. However, our method
can recognize and capture the overall asymmetry and recover the
model precisely. In contrast, all other methods try to make the sofa
symmetric during completion.

We show results with panoramic views in the supplementary
video and more completion results for all categories in the supple-
mentary material.

4.4 Ablation Studies
Here we evaluate the design of the network of our method. We
consider the following ablation versions:

• No GT viewpoint. The main assumption of our method is
that the viewpoint configuration is known. We assume that
we do not have this information and predict the viewpoint
from the partial scan.

• No offset adjustment. We test how our method performs
when the offset adjustment step is removed.

• No offset constraint. We test how our method performs if
we do the refinement without the offset constrain.

Figure 8: Ablation study: compare our method with the ver-
sion that has no offset adjustment step.

Figure 9: Ablation study: compare our method with the ver-
sion that does not apply offset constrain during refinement.

The quantitative results are shown in Table 2. We can see that
the final version of the method has the overall best performance.

Without the viewpoint information, the quality of the final re-
sults is getting slightly worse. However, the average 𝐶𝐷 and 𝑆𝐶𝐷
values are still better than all other baseline methods. Note that the
prediction of viewpoint from partial input is not the focus of this
paper. We found that with the imperfect viewpoint, our method
still works and can produce results with satisfactory quality. The
detail of the viewpoint prediction method and related experimental
results can be found in the supplementary material.

When there is no offset adjustment step, the performance of
our method drops. Some points cannot move to expected locations
without the offset adjustment with a single step. Then the network
tends to assign a small offset to points, so fewer points are generated
in the missing area. This is why the 𝑆𝐶𝐷2 is getting worse. In Fig.8
we can see that the one-step offset results look crude: there are
holes (such as the chair) or incomplete parts (such as the half-size
lamp) in the unobserved area. With the offset adjustment step, the
completion results 𝑃𝑜 ′ and 𝑃𝑜 are improved simultaneously, and so
are the final completion results.

When there is no offset constraint in the refinement module,
the performance of our method also drops. We can see that the
𝑆𝐶𝐷1 value increases the most compared with other alternative
solutions. Without the constraints, the points can move in larger
ranges during refinement. Such movement especially makes the
completion of the observed part worse because the local details
tend to be blurred. We can see such effects in Fig.9. Without the
constraints, the area under the table surface and the details of the
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lamp are blurred, while with the constraints, we get very neat and
clean local details.

The number of points that move along each ray is also important
for our method. We evaluate how many points should move along
each ray during the completion. Theoretically, too few points may
not be enough to represent an initial complete result, because the
rays can be sparse. However, too many points may cause unnec-
essary fillings inside the object, leading to larger shape loss and
higher computation complexity. So we try different numbers of
points and compute the evaluation values for each case. The results
are shown in Table 3. We found that using four points gets the
overall best results with higher 𝐷𝐶𝐷 , 𝑆𝐶𝐷2 and F-score. Therefore,
we use four points when implementing our experiments.

We also test our method with ablations in the offset prediction
and adjustment steps regarding the transformer and the feature
extraction. The details of these experiments can be found in the
supplementary material.

5 CONCLUSION
This paper proposes a new framework for single view point cloud
completion. The key insight is that the vast solution space can be
drastically reduced when using shadow volumes and camera rays
as the solution basis. This construction leads to two types of com-
pletion strategies by moving points for completion: one is moving
points along rays, and the other is the local constrained movement
for refinement. Moreover, we propose a more fine-grained metric
for evaluation: the split 𝐶𝐷 (𝑆𝐶𝐷), with which we can analyze
the completion quality for the observed part and the unobserved
part separately and jointly. Extensive evaluation and comparison
demonstrate the superiority of our method over the current SOTA
methods.

Limitations and future work. Our method relies on the details of
the partial scan. If the quality of the scan is low, especially when
the main structure or significant part of the shape is not captured,
our method might have difficulties recovering the correct local
details. Two representative examples are shown and discussed in
the supplementary material. In the future, instead of generating
one geometry, we will aim to generate a distribution of possible ge-
ometries where more prior knowledge or user’s preferences can be
considered. As mesh is a more useful data type, predicting implicit
function along camera rays for reconstruction is also worth further
exploration.
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